Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.102
Filtrar
1.
Biotechnol Bioeng ; 119(1): 176-186, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34672363

RESUMO

Various types of hemoglobin (Hb)-based oxygen carriers (HBOCs) have been developed as red blood cell substitutes for treating blood loss when blood is not available. Among those HBOCs, glutaraldehyde polymerized Hbs have attracted significant attention due to their facile synthetic route, and ability to expand the blood volume and deliver oxygen. Hemopure®, Oxyglobin®, and PolyHeme® are the most well-known commercially developed glutaraldehyde polymerized Hbs. Unfortunately, only Oxyglobin® was approved by the FDA for veterinary use in the United States, while Hemopure® and PolyHeme® failed phase III clinical trials due to their ability to extravasate from the blood volume into the tissue space which facilitated nitric oxide scavenging and tissue deposition of iron, which elicited vasoconstriction, hypertension and oxidative tissue injury. Fortunately, conjugation of poly (ethylene glycol) (PEG) on the surface of Hb is capable of reducing the vasoactivity of Hb by creating a hydration layer surrounding the Hb molecule, which increases its hydrodynamic diameter and reduces tissue extravasation. Several commercial PEGylated Hbs (MP4®, Sanguinate®, Euro-PEG-Hb) have been developed for clinical use with a longer circulatory half-life and improved safety compared to Hb. However, all of these commercial products exhibited relatively high oxygen affinity compared to Hb, which limited their clinical use. To dually address the limitations of prior generations of polymerized and PEGylated Hbs, this current study describes the PEGylation of polymerized bovine Hb (PEG-PolybHb) in both the tense (T) and relaxed (R) quaternary state via thiol-maleimide chemistry to produce an HBOC with low or high oxygen affinity. The biophysical properties of PEG-PolybHb were measured and compared with those of commercial polymerized and PEGylated HBOCs. T-state PEG-PolybHb possessed higher hydrodynamic volume and P50 than previous generations of commercial PEGylated Hbs. Both T- and R-state PEG-PolybHb exhibited significantly lower haptoglobin binding rates than the precursor PolybHb, indicating potentially reduced clearance by CD163 + monocytes and macrophages. Thus, T-state PEG-PolybHb is expected to function as a promising HBOC due to its low oxygen affinity and enhanced stealth properties afforded by the PEG hydration shell.


Assuntos
Substitutos Sanguíneos , Filtração/métodos , Hemoglobinas , Oxigênio/metabolismo , Polietilenoglicóis , Animais , Substitutos Sanguíneos/análise , Substitutos Sanguíneos/química , Substitutos Sanguíneos/isolamento & purificação , Bovinos , Hemoglobinas/análise , Hemoglobinas/química , Hemoglobinas/isolamento & purificação , Cinética , Peso Molecular , Polietilenoglicóis/análise , Polietilenoglicóis/química , Polietilenoglicóis/isolamento & purificação , Propriedades de Superfície
2.
Anal Bioanal Chem ; 413(21): 5409-5417, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34235569

RESUMO

In this study, a novel kind of imprinted polymers based on metal-organic frameworks (MOF@DES-MIPs) was prepared, using bovine hemoglobin (BHb) as template molecules and deep eutectic solvents (DES) as functional monomers for selective recognition and adsorption of BHb. MOF were used as the substrates to improve the accessibility of imprinted sites and DES as the functional monomers to produce different forces for BHb to help the formation of imprinted sites. Imprinted polymer films were taken to provide analyte selectivity. The MOF@DES-MIPs prepared were characterized and evaluated by scanning electron microscope, X-ray diffraction, and Fourier transform infrared spectrometer. We also investigated the influences of BHb concentration and adsorption time on the performance of MOF@DES-MIPs. The maximal adsorption capacity of MOF@DES-MIPs to BHb reached 151.28 mg g-1, and the MOF@DES-MIPs showed good selectivity and fast adsorption equilibrium, which might offer a novel method for the preparation and research of molecularly imprinted polymers of biomacromolecules. In addition, MOF@DES-MIPs were successfully applied in the selective recognition of BHb from a real bovine blood sample. Graphical abstract.


Assuntos
Hemoglobinas/isolamento & purificação , Estruturas Metalorgânicas/química , Polímeros Molecularmente Impressos/química , Adsorção , Animais , Bovinos , Impressão Molecular , Solventes
3.
Chem Res Toxicol ; 34(6): 1664-1671, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33909420

RESUMO

Cells are continually exposed to endogenous reactive oxygen, nitrogen, and halogen species, causing damage to biomolecules. Among them, peroxynitrite and hypochlorous acid are not only oxidants but also biological nitrating and chlorinating agents, leading to the formation of 3-nitrotyrosine and 3-chlorotyrosine, respectively, in proteins. 3-Nitrotyrosine has been detected in vivo under several pathophysiological conditions, including breast cancer. Studies show that the concentrations of 3-nitrotyrosine in plasma proteins and platelets were significantly elevated in breast cancer patients. Compared to blood serum albumin, hemoglobin adducts represent biomonitoring of exposure with a longer lifetime. In this study, human hemoglobin was freshly isolated from blood and digested into peptides with trypsin, and the levels of protein adducts, including nitration, nitrosylation, and chlorination of tyrosine as well as oxidation of methionine residues, were simultaneously quantified by nanoflow liquid chromatography nanoelectrospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS) with selected reaction monitoring. The results demonstrated that the relative extents of nitration at α-Tyr-42 and ß-Tyr-130, nitrosylation at α-Tyr-24, and chlorination at α-Tyr-24 and ß-Tyr-130 are significantly higher in globin of 25 breast cancer patients compared to those in 25 healthy subjects (p < 0.05). In particular, nitration at α-Tyr-42 and chlorination at α-Tyr-24 showed the area under the receiver operating characteristic curve of >0.8. While the age of the subjects is correlated with the extents of some of these adducts, the body mass index does not have an effect on any of them. Starting with 1 drop of blood, our results indicated that this highly sensitive and specific nanoLC-NSI/MS/MS is useful in investigating the role of reactive nitrogen oxide species and reactive chlorine species in the etiology of breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Hemoglobinas/metabolismo , Nanotecnologia , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Cromatografia Líquida , Feminino , Halogenação , Hemoglobinas/análise , Hemoglobinas/isolamento & purificação , Humanos , Pessoa de Meia-Idade , Oxirredução , Espectrometria de Massas em Tandem
4.
Transfusion ; 61(6): 1894-1907, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33817808

RESUMO

BACKGROUND: Hemolysis releases toxic cell-free hemoglobin (Hb), heme, and iron, which overwhelm their natural scavenging mechanisms during acute or chronic hemolytic conditions. This study describes a novel strategy to purify a protein cocktail containing a comprehensive set of scavenger proteins for potential treatment of hemolysis byproducts. STUDY DESIGN AND METHODS: Tangential flow filtration was used to purify a protein cocktail from Human Cohn Fraction IV (FIV). A series of in vitro assays were performed to characterize composition and biocompatibility. The in vivo potential for hemolysis byproduct mitigation was assessed in a hamster exchange transfusion model using mechanically hemolyzed blood plasma mixed with the protein cocktail or a control colloid (dextran 70 kDa). RESULTS: A basis of 500 g of FIV yielded 62 ± 9 g of a protein mixture at 170 g/L, which bound to approximately 0.6 mM Hb, 1.2 mM heme, and 1.2 mM iron. This protein cocktail was shown to be biocompatible in vitro with red blood cells and platelets and exhibits nonlinear concentration dependence with respect to viscosity and colloidal osmotic pressure. In vivo assessment of the protein cocktail demonstrated higher iron transport to the liver and spleen and less to the kidney and heart with significantly reduced renal and cardiac inflammation markers and lower kidney and hepatic damage compared to a control colloid. DISCUSSION: Taken together, this study provides an effective method for large-scale production of a protein cocktail suitable for comprehensive reduction of hemolysis-induced toxicity.


Assuntos
Proteínas Sanguíneas/uso terapêutico , Heme/isolamento & purificação , Hemoglobinas/isolamento & purificação , Hemólise/efeitos dos fármacos , Ferro/isolamento & purificação , Animais , Proteínas Sanguíneas/química , Humanos , Masculino , Mesocricetus , Resultado do Tratamento
5.
Sci Rep ; 11(1): 6309, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737646

RESUMO

We aimed to assess risk factors for anemia at delivery by conducting a secondary analysis of a prospective cohort study database including 1527 women who delivered vaginally ≥ 36 gestational weeks. Anemia (Hemoglobin (Hb) < 10.5 g/dL) was assessed at delivery. A complete blood count results during pregnancy as well as maternal and obstetrical characteristics were collected. The primary endpoint was to determine the Hb cutoff between 24 and 30 gestational weeks that is predictive of anemia at delivery by using the area under the curve (AUC) of the receiver operating characteristic curve. Independent risk factors for anemia at delivery were assessed using stepwise multivariable logistic regression. Hb and infrequent iron supplement treatment were independent risk factors for anemia at delivery (OR 0.3 95%CI [0.2-0.4] and OR 2.4 95%CI [1.2-4.8], respectively; C statistics 83%). Hb 10.6 g/dL was an accurate cutoff to predict anemia at delivery (AUC 80% 95%CI 75-84%; sensitivity 75% and specificity 74%). Iron supplement was beneficial to prevent anemia regardless of Hb value. Altogether, Hb should be routinely tested between 24 and 30 gestational weeks to screen for anemia. A flow chart for anemia screening and treatment during pregnancy is proposed in the manuscript.Trial registration: ClinicalTrials.gov Identifier: NCT02434653.


Assuntos
Anemia Ferropriva/sangue , Anemia/sangue , Hemoglobinas/genética , Ferro/metabolismo , Adulto , Anemia/genética , Anemia/metabolismo , Anemia/patologia , Anemia Ferropriva/genética , Anemia Ferropriva/metabolismo , Anemia Ferropriva/patologia , Área Sob a Curva , Contagem de Células Sanguíneas , Parto Obstétrico , Feminino , Hemoglobinas/isolamento & purificação , Hemoglobinas/metabolismo , Humanos , Gravidez , Fatores de Risco
6.
ACS Appl Mater Interfaces ; 13(9): 11166-11176, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33635047

RESUMO

Magnetic material is considered to as a major concern material for the enrichment of histidine-rich proteins (His-proteins) via metal-ion affinity. In this work, magnetic polymer microspheres with core-shell structure (Fe3O4@PMAA@Ni) were successfully prepared via reflux-precipitation polymerization followed by in situ reduction and growth of Ni2+. The obtained Ni nanofoams with flower-like structure and uniform pore size (3.34 nm) provided numerous binding sites for His-proteins. The adsorption performance of Fe3O4@PMAA@Ni microspheres for His-proteins was estimated via selectively separating bovine hemoglobin (BHb) and bovine serum albumin (BSA) from a matrix composed of BHb, BSA, and lysozyme (LYZ). The results indicated that Fe3O4@PMAA@Ni microspheres could efficiently and selectively separate His-proteins from the matrix, with a maximum adsorption capacity of ∼2660 mg/g for BHb. Moreover, Fe3O4@PMAA@Ni microspheres exhibited good stability and recyclability for BHb separation over seven cycles. Therefore, this work reported a novel and facile strategy to prepare core-shell Fe3O4@PMAA@Ni microspheres, which was promising for practical applications of His-protein separation and purification in proteomics.


Assuntos
Fracionamento Químico/métodos , Hemoglobinas/isolamento & purificação , Nanopartículas de Magnetita/química , Microesferas , Proteínas/isolamento & purificação , Soroalbumina Bovina/isolamento & purificação , Adsorção , Animais , Bovinos , Hemoglobinas/química , Histidina/química , Fenômenos Magnéticos , Níquel/química , Ácidos Polimetacrílicos/química , Proteínas/química , Soroalbumina Bovina/química
7.
Sci Rep ; 11(1): 3788, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589647

RESUMO

Hematological analysis is essential for patients who are supported by a mechanical circulatory support (MCS). The laboratory methods used to analyze blood components are conventional and accurate, but they require a mandatory turn-around-time for laboratory results, and because of toxic substances, can also be hazardous to analysis workers. Here, a simple and rapid point-of-care device is developed for the measurement of plasma free hemoglobin (PFHb) and hematocrit (Hct), based on colorimetry. The device consists of camera module, minimized centrifuge system, and the custom software that includes the motor control algorithm for the centrifuge system, and the image processing algorithm for measuring the color components of blood from the images. We show that our device measured PFHb with a detection limit of 0.75 mg/dL in the range of (0-100) mg/dL, and Hct with a detection limit of 2.14% in the range of (20-50)%. Our device had a high correlation with the measurement method generally used in clinical laboratories (PFHb R = 0.999, Hct R = 0.739), and the quantitative analysis resulted in precision of 1.44 mg/dL for PFHb value of 14.5 mg/dL, 1.36 mg/dL for PFHb value of 53 mg/dL, and 1.24% for Hct 30%. Also, the device can be measured without any pre-processing when compared to the clinical laboratory method, so results can be obtained within 5 min (about an 1 h for the clinical laboratory method). Therefore, we conclude that the device can be used for point-of-care measurement of PFHb and Hct for MCS.


Assuntos
Hematócrito , Testes Hematológicos/instrumentação , Hemoglobinas/isolamento & purificação , Testes Imediatos/normas , Colorimetria/instrumentação , Testes Hematológicos/métodos , Humanos , Dispositivos Lab-On-A-Chip
8.
Bioconjug Chem ; 32(2): 328-338, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33522239

RESUMO

Zika virus (ZIKV) leads to congenital microcephaly and anomalies and severe neurological diseases such as Guillain-Barre syndrome. Safe and effective vaccines are necessitated to deal with these severe health threats. As an ideal antigen, the domain III of the envelope protein (EDIII) of ZIKV can evoke potent neutralizing antibodies without any antibody-dependent enhancement (ADE) effect. However, EDIII necessitates to be formulated with an antigen delivery system or adjuvants to improve its immunogenicity. Hemoglobin (Hb) regulates inflammation, cytokine levels, and activate macrophage. Mannan is a polysaccharide of the fungal cell wall with an immunomodulatory activity. In this study, EDIII was conjugated with Hb and mannan, using the disulfide bond as the linker. Hb and mannan both functioned as the adjuvants. Conjugation of Hb and mannan acted as the delivery system for EDIII. The structure of EDIII was essentially maintained upon conjugation of Hb and mannan. The intracellular release of EDIII from the conjugate (HM-EDIII-2) was achieved by reduction of the glutathione-sensitive disulfide bond. As compared with EDIII, HM-EDIII-2 elicited high EDIII-specific IgG titers and high levels of Th1-type cytokines (IFN-γ and IL-2) and Th2-type cytokines (IL-5 and IL-10), along with no apparent toxicity to the organs. Moreover, the pharmacokinetic study revealed a prolonged serum exposure of HM-EDIII-2 to the immune cells. Thus, HM-EDIII-2 could boost a strong humoral and cellular immune response to EDIII. Our study was expected to provide the feasibility necessary to develop a robust and potentially safe ZIKV vaccine.


Assuntos
Hemoglobinas/química , Mananas/química , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Zika virus/química , Zika virus/imunologia , Animais , Anticorpos Antivirais/biossíntese , Cromatografia em Gel , Dicroísmo Circular , Citocinas/metabolismo , Eletroforese em Gel de Poliacrilamida , Hemoglobinas/isolamento & purificação , Humanos , Imunidade Celular , Mananas/isolamento & purificação , Camundongos , Camundongos Endogâmicos BALB C , Conformação Proteica , Ratos , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier , Proteínas do Envelope Viral/isolamento & purificação , Vacinas Virais/imunologia
9.
J Chromatogr A ; 1637: 461831, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33373794

RESUMO

In this work, the porous cellulose-agarose microspheres with high specific surface area and enhanced mechanical strength are prepared by a novel chemical crosslinking method. The crosslinking reaction homogeneously proceeds between polysaccharides, and the covalent bonding network is generated to replace the inherent hydrogen bonding network of cellulose. The prepared microspheres exhibit low crystallinity of 12.45%, which means high content of amorphous regions. The micro-meso-macroporous structure of microspheres in morphology is conducive to high permeability and adsorption capacity, and the microspheres possess high specific surface area of 183.81 m2/g. The affinity chromatographic microspheres are prepared by immobilizing Cu2+, which exhibits high adsorption capacity of 197.65 mg/g for bovine hemoglobin (BHb), fast adsorption rate wihin 40 minutes, well-selectivity, and excellent recyclability in ten cycles. We expect that this work to provide an outstanding candidate for the high performance of biomacromolecular purification.


Assuntos
Microesferas , Proteínas/isolamento & purificação , Adsorção , Animais , Bovinos , Celulose/química , Cromatografia de Afinidade/métodos , Hemoglobinas/isolamento & purificação , Ligação de Hidrogênio , Permeabilidade , Porosidade , Sefarose/química
10.
J Chromatogr A ; 1633: 461636, 2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33160254

RESUMO

The traditional preparation of cellulose microspheres always involves tedious synthetic procedures (e.g., dissolution, emulsification and regeneration) and inevitable organic solvents, which undergoes both high production cost and environmental contamination. To overcome these issues, a feasible and green synthesis strategy is proposed to construct porous cellulose microspheres (PCMs) via one-step spontaneous formation relying on sodium periodate oxidation of pure bamboo fibers. By this strategy, a cluster of robust cellulose microspheres grow up on the surface of bamboo fibers in aqueous phase through amorphous oxidized cellulose self-assembly accumulation and then drop out when their sizes increase to about 15 µm. After being immobilized with Cu(II), the prepared cellulose microspheres serve as metal affinity adsorbent for proteins adsorption, showing high adsorption capacity, good selectivity and excellent reusability for bovine hemoglobin (BHb). Together with green and easy synthesis, the novel cellulose microspheres show a promising alternative to commercially available adsorbent support.


Assuntos
Bambusa/química , Técnicas de Química Analítica/métodos , Microesferas , Proteínas/isolamento & purificação , Adsorção , Animais , Bovinos , Celulose/química , Hemoglobinas/isolamento & purificação , Porosidade , Proteínas/química , Solventes/química , Água/química
11.
Sci Rep ; 10(1): 11372, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647211

RESUMO

Administration of hemoglobin-based oxygen carriers (HBOCs) into the systemic circulation is a potential strategy to relieve solid tumor hypoxia in order to increase the effectiveness of chemotherapeutics. Previous computational analysis indicated that the oxygen (O2) status of the tumor and HBOC O2 affinity may play a role in increased O2 delivery to the tumor. However, no study has experimentally investigated how low- and high-affinity HBOCs would perform in normoxic and hypoxic tumors. In this study, we examined how the HBOC, polymerized human hemoglobin (PolyhHb), in the relaxed (R) or tense (T) quaternary state modulates O2 delivery to hypoxic (FME) and normoxic (LOX) human melanoma xenografts in a murine window chamber model. We examined microcirculatory fluid flow via video shearing optical microscopy, and O2 distributions via phosphorescence quenching microscopy. Additionally, we examined how weekly infusion of a 20% top-load dose of PolyhHb influences growth rate, vascularization, and regional blood flow in the FME and LOX tumor xenografts. Infusion of low-affinity T-state PolyhHb led to increased tissue oxygenation, decreased blood flow, decreased tumor growth, and decreased vascularization in hypoxic tumors. However, infusion of both T-state and R-state PolyhHbs led to worse outcomes in normoxic tumors. Of particular concern was the high-affinity R-state PolyhHb, which led to no improvement in hypoxic tumors and significantly worsened outcomes in normoxic tumors. Taken together, the results of this study indicate that the tumor O2 status is a primary determinant of the potency and outcomes of infused PolyhHb.


Assuntos
Hemoglobinas/farmacologia , Melanoma/tratamento farmacológico , Oxigênio/metabolismo , Polímeros/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Animais , Hipóxia Celular/efeitos dos fármacos , Eritrócitos/química , Feminino , Hemoglobinas/química , Hemoglobinas/isolamento & purificação , Hemoglobinas/uso terapêutico , Humanos , Infusões Intravenosas , Melanoma/irrigação sanguínea , Melanoma/patologia , Camundongos , Microcirculação/efeitos dos fármacos , Peso Molecular , Oxigênio/análise , Polimerização , Polímeros/química , Polímeros/uso terapêutico , Neoplasias Cutâneas/irrigação sanguínea , Neoplasias Cutâneas/patologia , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mikrochim Acta ; 187(8): 472, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32725323

RESUMO

An immobilized metal affinity (IMA) adsorbent was prepared by grafting bottlebrush polymer pendant with iminodiacetic acid (IDA) from the surface of polydopamine (PDA)-coated magnetic graphene oxide (magGO), via surface-initiated atom transfer radical polymerization (SI-ATRP). Poly(hydroxyethyl methacrylate) (PHEMA) was grafted firstly from the PDA-coated magGO as the backbone, and then poly(glycidyl methacrylate) was grafted from the PHEMA chains via the second SI-ATRP to afford the bottlebrush polymer-grafted magGO Thereafter, IDA was anchored on the nanocomposites to produce the IMA adsorbent after chelating copper ions. The adsorbent was characterized by various physical and physicochemical methods. Its adsorption properties were evaluated by using histidine-rich proteins (bovine hemoglobin, BHb) and other proteins (lysozyme and cytochrome-C). The results show that its maximum adsorption capacity to BHb was 378.6 mg g-1, and the adsorption equilibrium can be quickly reached within 1 h. The adsorbent has excellent reproducibility and reusability. It has been applied to selectively purify hemoglobin from human whole blood, indicating its potential in practical applications. Graphical abstract.


Assuntos
Grafite/química , Hemoglobinas/isolamento & purificação , Adsorção , Animais , Bovinos , Cobre/química , Humanos , Iminoácidos/química , Indóis/química , Extração Líquido-Líquido/métodos , Fenômenos Magnéticos , Poli-Hidroxietil Metacrilato/química , Polímeros/química , Ácidos Polimetacrílicos/química , Reprodutibilidade dos Testes
13.
Artigo em Inglês | MEDLINE | ID: mdl-32505113

RESUMO

The naturally extracellular hemoglobin (erythrocruorin) of the Canadian nightcrawler, Lumbricus terrestris (LtEc), is a unique oxygen transport protein that may be an effective substitute for donated human blood. Indeed, this ultra-high molecular weight (~3.6 MDa) hemoglobin has already been shown to avoid the side effects associated with previous hemoglobin-based oxygen carriers and its high thermal stability (Tm = 56°C) and resistance to heme oxidation (kox = 0.04 hr-1 × 103 at 20°C) allow it to be stored for long periods of time without refrigeration. However, before it can be tested in human clinical trials, an effective and scalable purification process for LtEc must be developed. We have previously purified LtEc for animal studies with tangential flow filtration (TFF), which allows rapid and scalable purification of LtEc based on its relatively large size, but that type of size-based purification may not be able to specifically remove some impurities and high MW (>500 kDa) contaminants like endotoxin (MW = ~1-4 MDa). Anion exchange (AEX) and immobilized metal affinity chromatography (IMAC) are two purification methods that have been previously used to purify mammalian hemoglobins, but they have not yet been used to purify large invertebrate hemoglobins like LtEc. Therefore, the goal of this study was to determine if AEX and IMAC resins could successfully purify LtEc from crude earthworm homogenate, while also preserving its macromolecular structure and function. Both processes were able to produce purified LtEc with low levels of endotoxin, but IMAC purification induced significantly higher levels of heme oxidation and subunit dissociation than AEX. In addition, the IMAC process required an additional desalting step to enable LtEc binding. In contrast, AEX produced highly pure LtEc that was not dissociated. LtEc purified by AEX also exhibits similar oxygen binding characteristics (P50 = 27.33 ± 1.82 mm Hg, n = 1.58 ± 0.17) to TFF-purified LtEc (P50 = 28.84 ± 0.40 mm Hg, n = 1.93 ± 0.02). Therefore, AEX appears to be the optimal method for LtEc purification.


Assuntos
Cromatografia por Troca Iônica/métodos , Hemoglobinas , Oligoquetos/química , Animais , Substitutos Sanguíneos , Cromatografia de Afinidade , Misturas Complexas/química , Endotoxinas/análise , Hemoglobinas/análise , Hemoglobinas/química , Hemoglobinas/isolamento & purificação , Hemoglobinas/metabolismo , Oxigênio/análise , Oxigênio/metabolismo
14.
J Biol Inorg Chem ; 25(2): 267-283, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32048044

RESUMO

Hemoglobins (Hbs) utilize heme b as a cofactor and are found in all kingdoms of life. The current knowledge reveals an enormous variability of Hb primary sequences, resulting in topological, biochemical and physiological individuality. As Hbs appear to modulate their reactivities through specific combinations of structural features, predicting the characteristics of a given Hb is still hardly possible. The unicellular green alga Chlamydomonas reinhardtii contains 12 genes encoding diverse Hbs of the truncated lineage, several of which possess extended N- or C-termini of unknown function. Studies on some of the Chlamydomonas Hbs revealed yet unpredictable structural and biochemical variations, which, along with a different expression of their genes, suggest diverse physiological roles. Chlamydomonas thus represents a promising system to analyze the diversification of Hb structure, biochemistry and physiology. Here, we report the crystal structure, resolved to 1.75 Å, of the heme-binding domain of cyanomet THB11 (Cre16.g662750), one of the pentacoordinate algal Hbs, which offer a free Fe-coordination site in the reduced state. The overall fold of THB11 is conserved, but individual features such as a kink in helix E, a tilted heme plane and a clustering of methionine residues at a putative tunnel exit appear to be unique. Both N- and C-termini promote the formation of oligomer mixtures, and the absence of the C terminus results in reduced nitrite reduction rates. This work widens the structural and biochemical knowledge on the 2/2Hb family and suggests that the N- and C-terminal extensions of the Chlamydomonas 2/2Hbs modulate their reactivity by intermolecular interactions.


Assuntos
Chlamydomonas reinhardtii/química , Hemoglobinas/química , Hemoglobinas/isolamento & purificação , Modelos Moleculares , Conformação Proteica
15.
Biosens Bioelectron ; 147: 111737, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655380

RESUMO

Ion-sensitive field-effect transistor (ISFET) as a biosensor facilitates a process of data-acquisition through label-free and real-time monitoring. Direct quantification of a biomarker in serum is challenging in ISFET biosensor since charged proteins in serum interfere transduction to electrical signals. Here, we report the fabrication of protein blocking layers (PBLs) with intended interfacial charges to minimize non-specific protein bindings on ISFET. Use of charged protein precursors enables to regulate the interfacial charge of PBLs, preserving their intrinsic electric features (neutral: hemoglobin, positively charged: lysozyme, negatively charged: BSA). The effect of this interfacial charge on the signal was demonstrated through PSMA (prostate cancer biomarker) sensing using a dual-gate ISFET biosensor. The neutral PBL showed the minimum noise compared to the negatively and positively charged PBLs, enabling the ISFET to exhibit the same detection range in untreated serum as with pre- or post-treatment (1 fg/ml to 100 ng/ml). The introduction of neutral PBLs to ISFET biosensors would allow the application of the ISFET biosensor as a point-of-care device.


Assuntos
Antígenos de Superfície/sangue , Técnicas Biossensoriais , Proteínas Sanguíneas/isolamento & purificação , Glutamato Carboxipeptidase II/sangue , Animais , Bovinos , Hemoglobinas/isolamento & purificação , Humanos , Muramidase/isolamento & purificação , Análise Serial de Proteínas , Soroalbumina Bovina/isolamento & purificação
16.
Biotechnol Bioeng ; 117(1): 125-145, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31612988

RESUMO

Apohemoglobin (apoHb) is a dimeric globular protein with two vacant heme-binding pockets that can bind heme or other hydrophobic ligands. Purification of apoHb is based on partial hemoglobin (Hb) unfolding to facilitate heme extraction into an organic solvent. However, current production methods are time consuming, difficult to scale up, and use highly flammable and toxic solvents. In this study, a novel and scalable apoHb production method was developed using an acidified ethanol solution to extract the hydrophobic heme ligand into solution and tangential flow filtration to separate heme from the resultant apoprotein. Total protein and active protein yields were >95% and ~75%, respectively, with <1% residual heme in apoHb preparations and >99% purity from sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. Virtually no loss of apoHb activity was detected at 4°C, -80°C, and in lyophilized form during long term storage. Structurally, size exclusion chromatography (SEC) and circular dichroism indicated that apoHb was dimeric with a ~25% reduction of helical content compared to Hb. Furthermore, mass spectroscopy and reverse-phase chromatography indicated that the mass of the α and ß subunits were virtually identical to the theoretical mass of these subunits in Hb and had no detectable oxidative modifications upon heme removal from Hb. SEC confirmed that apoHb bound to haptoglobin at a similar ratio to that of native Hb. Finally, reconstituted Hb (rHb) was processed via a hemichrome removal method to isolate functional rHb for biophysical characterization in which the O2 equilibrium curve, O2 dissociation, and CO association kinetics of rHb were virtually identical to native Hb. Overall, this study describes a novel and improved method to produce apoHb, as well as presents a comprehensive biochemical analysis of apoHb and rHb.


Assuntos
Apoproteínas , Biotecnologia/métodos , Hemoglobinas , Desdobramento de Proteína , Apoproteínas/química , Apoproteínas/isolamento & purificação , Apoproteínas/metabolismo , Cromatografia Líquida/instrumentação , Cromatografia Líquida/métodos , Eritrócitos/química , Heme/química , Heme/isolamento & purificação , Heme/metabolismo , Hemoglobinas/química , Hemoglobinas/isolamento & purificação , Hemoglobinas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Oxirredução
17.
Artigo em Inglês | MEDLINE | ID: mdl-31525721

RESUMO

Isoelectric focusing (IEF) has been used for determination of meat quality with high stability analysis. However, it still suffered from time-consuming, laborious and cost-effective performances, e.g., 3 h protein extraction, more than 10 h rehydration time, 5-12 h focusing time, and imaging of protein band. To overcome these issues, a speedy extraction of colorful proteins was developed by controlling extraction and centrifugation of 0.2g sample within 10 min and 15 min respectively; a rapid analytical method was designed by using a quick array IEF with 25 min rehydration, 7 min focusing, 2 min online scanning and imaging of focused proteins. The total analytical time was well controlled within 1 h, significantly less than the traditional IEF time of 24 h. To demonstrate the proposed method, 18 chickens were classified into three groups, e.g., the normal slaughtering, death treatment underwater, and death with infection via the New castle disease (NDV) virus. The experiments demonstrated that two Mb bands with pI 6.8 and 7.4 were present in slaughtered chickens, while four other bands with pI 6.83, 6.95, 7.09, and 7.13 were observed in abnormal chicken. The additional four proteins bands were identified by western blot (WB) as hemoglobin proteins. Furthermore, array Immobilized pH Gradient (IPG) has high sensitivity (absolute LOD of Mb and Hb were 1.3 ng and 5.5 ng), fair stability (RSD values of 2.32%, 2.27%, and 1.69%) for slaughtered, drowned, NDV-infected chickens for intra-day and (2.94%, 1.66%, and 1.07%) for inter-days, and good recovery (100%, 98.25% and 99.75%). Finally, the developed method could be used for the identification of chicken meat quality with less time and small volume reagents consuming.


Assuntos
Galinhas , Hemoglobinas/isolamento & purificação , Focalização Isoelétrica/métodos , Carne/análise , Mioglobina/isolamento & purificação , Animais , Inocuidade dos Alimentos , Hemoglobinas/química , Limite de Detecção , Modelos Lineares , Carne/normas , Mioglobina/química , Reprodutibilidade dos Testes
18.
Indian J Med Res ; 149(6): 755-762, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31496528

RESUMO

Background & objectives: The non-invasive method of haemoglobin (Hb) estimation has unique advantages of exemption of finger prick and associated pain, over invasive methods. This study was done to compare invasive and non-invasive methods of Hb estimation in blood donors keeping haematology analyzer (HA) as a reference method. Methods: The blood donors selected or deferred on the basis of CuSO4method (Hb ≥12.5 g/dl), were included in the study. Hb values of the donors were estimated by HemoCue and then by OrSense methods. An immediate post-donation venous sample was drawn for analysis on HA. Results: The mean Hb value was 13.98±1.27 g/dl on HA, 14.87±1.03 g/dl on OrSense and 15.03±1.31 g/dl on HemoCue. CuSO4, HemoCue and OrSense demonstrated sensitivities of 18.7, 18.7 and 13.1 per cent, positive predictive values (PPV) of 64.5, 83.3 and 60.9 per cent and specificities of 98.9, 99.6 and 99.1 per cent, respectively. The intra-class correlation coefficient for OrSense was 0.726 while that for HemoCue was 0.851. Bland-Altman plots demonstrated 2SD difference of >2.0 g/dl in Hb estimations between HA and HemoCue/OrSense. Interpretation & conclusions: The non-invasive modality may provide the near-ideal pre-donation Hb screening platform if an improvement can be done in the sensitivity and PPV of the non-invasive method keeping in view its unique advantages.


Assuntos
Doadores de Sangue , Hemoglobinas/isolamento & purificação , Programas de Rastreamento , Transfusão de Sangue , Feminino , Hemoglobinas/metabolismo , Humanos , Masculino
19.
J Mater Chem B ; 7(36): 5510-5519, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31429461

RESUMO

Adsorbents with synchronously high protein adsorption performance and a facile synthetic route are highly desired in protein separation. In this study, a facile yet effective strategy to develop porous chitosan microspheres (PCMs) with high specific surface area (SSA) using agarose as the pore-forming agent is reported. Through heat treatment, the agarose chains in the chitosan/agarose composite microspheres (CAM) were removed, leading to the generation of nanopores/nanochannels and the improvement of SSA. The obtained PCMs showed hierarchical porous structure and a maximum SSA of 246.48 m2 g-1. For the application of PCMs as a protein adsorbent, by modification, the resultant immobilized Cu2+ affinity adsorbent (denoted as Cu2+PCM-15) exhibited a high adsorption capacity (301.88 mg g-1), fast adsorption rate (reaching equilibrium in less than 15 min), and excellent adsorption selectivity for BHb. Together with its environmental-friendliness, and abundant biomass chitosan and agarose, the as-prepared affinity adsorbent with high performance has great application potential in the field of bioseparation.


Assuntos
Quitosana/química , Cobre/química , Hemoglobinas/química , Microesferas , Sefarose/química , Adsorção , Animais , Bovinos , Hemoglobinas/isolamento & purificação , Tamanho da Partícula , Porosidade , Propriedades de Superfície
20.
Talanta ; 205: 120078, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31450390

RESUMO

A novel imidazolium-dysprosium-based magnetic nanomaterial, i.e. [C16mim]5[Dy(SCN)8] nanoGUMBOS (nanomaterials fabricated from a group of uniform material based on organic salts), was prepared using a facile method for selective hemoglobin (Hb) isolation. In this nanomaterial, the imidazolium cation serves as a selective Hb affinity group, while dysprosium contributes paramagnetic properties. Through a combination of the advantages of ionic liquids, magnetic adsorbent, and nanoscale solid phase extraction, [C16mim]5[Dy(SCN)8] nanoGUMBOS exhibit great selectivity toward Hb and a favorable extraction efficiency of 95.4% when 1 mL of 100 µg/mL Hb solution is processed with 0.6 mg of [C16mim]5[Dy(SCN)8] nanoGUMBOS. As the Hb concentration increased to 800 µg/mL, the adsorption capacity approached ∼840 µg/mg. The adsorbed protein is recovered with an elution efficiency of 87% by using 1% SDS solution. This novel nanoGUMBOS solid-phase extraction procedure was successfully applied to selective isolation of Hb from human whole blood and verified using SDS-PAGE. This simple strategy is a novel approach towards fabrication and use of a nanoadsorbent for selective isolation of proteins.


Assuntos
Disprósio/química , Hemoglobinas/isolamento & purificação , Nanoestruturas/química , Extração em Fase Sólida/métodos , Adsorção , Sangue , Análise Química do Sangue/instrumentação , Análise Química do Sangue/métodos , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Hemoglobinas/química , Humanos , Imidazóis/química , Líquidos Iônicos/química , Fenômenos Magnéticos , Sais/química , Extração em Fase Sólida/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA